
COP 3223: C Programming (Intro To C – Part 3) Page 1 © Dr. Mark J. Llewellyn

COP 3223: C Programming

Spring 2009

Introduction To C - Part 3

School of Electrical Engineering and Computer Science

University of Central Florida

Instructor : Dr. Mark Llewellyn

markl@cs.ucf.edu

HEC 236, 407-823-2790

http://www.cs.ucf.edu/courses/cop3223/spr2009/section1

COP 3223: C Programming (Intro To C – Part 3) Page 2 © Dr. Mark J. Llewellyn

More Basic C Programming

• Returning briefly to the program from the previous set

of notes that produced the sum of two integer values, I

want to show you a slight modification to the code that

we could have made, which is perfectly legal in C.

• The modification involves the need and/or use of the

variable sum. In the version of the program in the

previous set of notes, we defined a variable, called

sum, to hold the sum of integer1 + integer2.

• As is shown in the code on the next page, we didn‟t

really need this variable, as we could have moved the

calculation of the sum into the printf function call.

COP 3223: C Programming (Intro To C – Part 3) Page 3 © Dr. Mark J. Llewellyn

// sum of two integers (a second C program)

// This program adds two, user supplied, integers and prints their sum

// January 13, 2009 Written by: Mark Llewellyn

#include <stdio.h>

//main function

int main()

{

int integer1; //first integer to be entered by user

int integer2; //second integer to be entered by user

//write prompts to user and get numbers

printf("Enter first integer number\n");

scanf("%d", &integer1);

printf("Enter second integer number\n");

scanf("%d", &integer2);

printf("The sum is %d\n", integer1 + integer2);

printf("\n\n");

system("PAUSE");

return 0;

} //end main function

Modified version of the

sum of two integers

program

COP 3223: C Programming (Intro To C – Part 3) Page 4 © Dr. Mark J. Llewellyn

A Brief Aside On Data Types In C

• In the last section of notes, when we introduced the concept of a
variable, we said that every variable is required to have a name
and a type.

• There are many different data types in C, but for right now, we are
restricting ourselves to two types: int (short for integer) and
float (short for floating-point).

• We‟ll later see that correctly choosing the type of a variable is
important from a program efficiency point of view, as well as
determining what kinds of operations can be performed on the
variable.

• The type of a numeric variable (a variable capable of storing a
number) determines the smallest and largest value that can be
stored in a variable of that type.

COP 3223: C Programming (Intro To C – Part 3) Page 5 © Dr. Mark J. Llewellyn

A Brief Aside On Data Types In C

Data type Smallest value Largest value

short int -32,768 32,767

unsigned short int 0 65,535

int -32,768 32,767

unsigned int 0 65,535

long int -2,147,483,648 2,147,483,647

unsigned long int 0 4,294,967,295

The int data type on a 16-bit machine

A machine with a 16-bit word size means that a “word” (the addressable component of the

machine‟s memory contains 16 bits. 216 = 65,536 values, not counting 0, so the maximum

unsigned integer value would be 65,535. Signed integers require one of the bits for the sign, so

only 15 bits are available for the number. 215 = 32,768, again counting for the zero value, this

leaves only 32,767 possible positive and 32,768 negative values. Long integers, sometimes

referred to as double precision require 2 words, or 32 bits. So, 232 = 4,294,967,295 possible

unsigned long integer values. Similarly, signed long integers lose 1 bit of precision for the sign

and thus, 231 = 2, 147,483,648 possible negative and 2, 147,483,647 positive values.

COP 3223: C Programming (Intro To C – Part 3) Page 6 © Dr. Mark J. Llewellyn

A Brief Aside On Data Types In C

Data type Smallest value Largest value

short int -32,768 32,767

unsigned short int 0 65,535

int -2,147,483,648 2,147,483,647

unsigned int 0 4,294,967,295

long int -2,147,483,648 2,147,483,647

unsigned long int 0 4,294,967,295

The int data type on a 32-bit machine

232 = 4,294,967,295

COP 3223: C Programming (Intro To C – Part 3) Page 7 © Dr. Mark J. Llewellyn

A Brief Aside On Data Types In C

Data type Smallest value Largest value

short int -32,768 32,767

unsigned short int 0 65,535

int -2,147,483,648 2,147,483,647

unsigned int 0 4,294,967,295

long int -9,223,372,036,854,775,808 9,223,372,036,854,775,807

unsigned long int 0 18,446,744,073,709,551,615

The int data type on a 64-bit machine

264 = 18,446,744,073,709,551,616

COP 3223: C Programming (Intro To C – Part 3) Page 8 © Dr. Mark J. Llewellyn

Formatting Output With printf

• In the two previous sections of notes, we‟ve developed programs
that both accepted input from the user using the scanf function
and printed output to the screen using the printf function.

• Let‟s take a closer look at the formatting capabilities possible with
both of these functions, focusing first on the printf function.

• Precise formatting is accomplished with printf.

• Every printf call contains a format control string the describes
the output format. (Recall that we looked at the format control
string last time in the context of a scanf call.)

• The format control string consists of conversion specifiers, flags,
field widths, precisions, and literal characters. Together with the
percent sign (% - used as a special delimiter), these form the
conversion specifications.

COP 3223: C Programming (Intro To C – Part 3) Page 9 © Dr. Mark J. Llewellyn

Formatting Output With printf

• The printf function can perform the following formatting
capabilities:

1. Rounding floating-point (real) values to an indicated number of
decimal places.

2. Aligning a column of numbers with decimal points appearing one
above the other.

3. Right-justification and left justification of outputs.

4. Inserting literal characters at precise locations in a line of output.

5. Representing floating-point numbers in exponential format.

6. Displaying all types of data with fixed-size field widths and
precisions.

COP 3223: C Programming (Intro To C – Part 3) Page 10 © Dr. Mark J. Llewellyn

Formatting Output With printf

• The printf function has the following general form:

printf(format-control-string, other-arguments);

• Even though we already seen some of the conversion specifiers
in the previous set of notes, let‟s look at them again, this time in
the context of a printf call and distinguish amongst the
various types of data that we can print.

COP 3223: C Programming (Intro To C – Part 3) Page 11 © Dr. Mark J. Llewellyn

Conversion Specifiers for Integers

Conversion Specifier Description

d Display a signed decimal integer.

i Display a signed decimal integer. (Note the i and d specifiers
are different when used with scanf.)

o Display an unsigned octal integer (Base 8 number).

u Display an unsigned decimal integer.

x or X Display an unsigned hexadecimal integer. X causes the digits

0-9 and letters A-F to be displayed and x causes the digits 0-9

and the letters a-f to be displayed.

h or l Place before any integer conversion specifier to indicate that a
short or long integer is displayed respectively. The letters

h and l are more precisely called length modifiers.

COP 3223: C Programming (Intro To C – Part 3) Page 12 © Dr. Mark J. Llewellyn

It is an “error” to

print a signed

integer using an

unsigned specifier.

The value seen is

essentially garbage.

COP 3223: C Programming (Intro To C – Part 3) Page 13 © Dr. Mark J. Llewellyn

Printing Floating-Point Numbers

• A floating-point value contains a decimal point as in

77.4, 69.69, or -743.293.

• Floating-point values are commonly displayed in one of

several formats, typically, depending either on the

magnitude of the number or the desired form for an

application.

• The table on the next page illustrates the conversion

specifiers that are applicable to floating-point values.

COP 3223: C Programming (Intro To C – Part 3) Page 14 © Dr. Mark J. Llewellyn

Conversion Specifiers for Floating-Point Values

Conversion Specifier Description

e or E Display floating-point values in exponential notation. e prints a

lowercase e for the exponential part while E prints an

uppercase E for the exponential part.

f Display floating-point values in fixed-point notation.

g or G Display a floating-point value in either the floating-point form f

or the exponential form e (or E) based on the magnitude of the

value.

L Place before any floating-point conversion specifier to indicate

that a long double floating-point value is displayed.

Values printed by the e, E, or f specifiers are output with six digits of precision to the

right of the decimal point by default (e.g., 3.141596).

Conversion specifier f, always prints at least one digit to the left of the decimal point.

Specifiers e and E always print 1 digit to the left of the decimal point.

COP 3223: C Programming (Intro To C – Part 3) Page 15 © Dr. Mark J. Llewellyn

COP 3223: C Programming (Intro To C – Part 3) Page 16 © Dr. Mark J. Llewellyn

Printing With Field Widths

• The exact size of a field in which data is to be printed is

specified by a field width.

• If the field width is larger than the data being printed, the

data is normally right-justified (i.e., pushed as far to the

right in the field as possible) within the field.

• An integer representing the field width is inserted between

the percent sign (%) and the conversion specifier (e.g.,

%6d).

• The sample program on the next page illustrates the use of

field widths and integer values.

COP 3223: C Programming (Intro To C – Part 3) Page 17 © Dr. Mark J. Llewellyn

Using Field Widths

COP 3223: C Programming (Intro To C – Part 3) Page 18 © Dr. Mark J. Llewellyn

Printing With Precision

• The printf function also provides the ability to specify the

precision with which data is printed.

• Precision has different meanings for different data types.

• When used with integer conversion specifiers, precision

indicates the minimum number of digits to be printed. If the

printed value contains fewer digits than the specified

precision, zeros are prefixed to the printed value until the

total number of digits is equal to the precision value

specified. The default precision is 1.

• When used with floating-point conversion specifiers e, E,

and f, the precision is the number of digits to appear to the

right of the decimal point.

COP 3223: C Programming (Intro To C – Part 3) Page 19 © Dr. Mark J. Llewellyn

Printing With Precision

• When used with conversion specifiers g and G, the precision

is the maximum number of significant digits to be printed.

• When used with the conversion specifier s (for strings), the

precision is the maximum number of characters to be printed

from the string.

• To use precision, place a decimal point (.) followed by an

integer representing the precision between the percent sign

(%) and the conversion specifier, e.g., %.4d.

• The sample program on the next page illustrates the use of

precision with conversion specifiers.

COP 3223: C Programming (Intro To C – Part 3) Page 20 © Dr. Mark J. Llewellyn

Using Precision

COP 3223: C Programming (Intro To C – Part 3) Page 21 © Dr. Mark J. Llewellyn

Using Precision

Note: when a floating-point value is printed with

a precision smaller than the original number of

decimal places in the value, the value is

rounded.

COP 3223: C Programming (Intro To C – Part 3) Page 22 © Dr. Mark J. Llewellyn

Combining Field Widths And Precision

• A very common occurrence is to use both field with and

precision when using the printf function.

• To use both field width and precision, place the field width

first, followed by a decimal point (.) followed by an integer

representing the precision between the percent sign (%) and

the conversion specifier, e.g., %9.3d.

• If we added the statement printf(“%9.3f”, 123.456789) to

the previous program, it would display 123.457, with three

digits to the right of the decimal point right-justified in a

nine-digit field.

COP 3223: C Programming (Intro To C – Part 3) Page 23 © Dr. Mark J. Llewellyn

Combining Field Widths And Precision

There is also another special way that field widths and

precision can be used together by using an integer

expression in the argument list following the format control

string. To use this feature, insert an asterisk (*) in place of

the field width or precision (or both) in the format control
string. The matching int argument in the argument list is

evaluated and used in place of the asterisk. A field width’s

value may be either positive or negative (which causes the

output to be left-justified in the field)

The statement printf(“%*.*f”, 7, 2, 69.866);

Uses 7 for the overall field width and 2 for the precision and

would thus print the value 69.87 right-justified.

COP 3223: C Programming (Intro To C – Part 3) Page 24 © Dr. Mark J. Llewellyn

Using Flags In The printf Format Control String

• The function printf also provides flags to supplement its

output formatting capabilities.

• There are five flags available as shown in the table on the

next page.

• To use a flag in a format control string, place the flag

immediately to the right of the percent sign. Several flags

can be combined in a one conversion specifier.

• A series of sample programs beginning on page 26, illustrate

the use of flags in the format control string of a printf

function call.

COP 3223: C Programming (Intro To C – Part 3) Page 25 © Dr. Mark J. Llewellyn

Format Control String Flags

Flag Description

− (minus sign) Left-justify the output within the specified field width.

+ (plus sign) Display a plus sign preceding positive values and a minus sign

preceding negative values

space Print a space before a positive value not printed with the + flag.

Prefix 0 to the output value when used with the octal

conversion specifier o.

Prefix 0x or 0X to the output values when used with the

hexadecimal conversion specifiers x or X.

Force a decimal point for a floating-point number printed with
e, E, f, g, or G that does not contain a fractional part

(default only prints decimal point if a number follows it). For
g and G specifiers, trailing zeros are not eliminated.

0 (zero) Pad a field with leading zeros.

COP 3223: C Programming (Intro To C – Part 3) Page 26 © Dr. Mark J. Llewellyn

Using Flags

Left and Right Justification

Minus sign flag

causes left-

justification

COP 3223: C Programming (Intro To C – Part 3) Page 27 © Dr. Mark J. Llewellyn

Using Flags

+ Flag

COP 3223: C Programming (Intro To C – Part 3) Page 28 © Dr. Mark J. Llewellyn

Using Flags

<space> Flag

COP 3223: C Programming (Intro To C – Part 3) Page 29 © Dr. Mark J. Llewellyn

Using Flags

Flag

COP 3223: C Programming (Intro To C – Part 3) Page 30 © Dr. Mark J. Llewellyn

Using Flags

0 (zero) Flag

COP 3223: C Programming (Intro To C – Part 3) Page 31 © Dr. Mark J. Llewellyn

Formatting Input Using scanf

• Precise input formatting can be accomplished using the

scanf function. Although it is not quite as common to

quite formatted input as it is to use formatted output, in

certain cases it is a nice feature to be able to use.

• Every scanf statement contains a format control string that

describes the format of the data to be input (see page 3 of this

set of notes for an example).

• For the scanf function, the format control string consists of

conversion specifiers and literal characters.

COP 3223: C Programming (Intro To C – Part 3) Page 32 © Dr. Mark J. Llewellyn

Formatting Input Using scanf

• The scanf function can provide the following input

formatting capabilities:

1. Inputting all types of data.

2. Inputting specific characters from an input screen.

3. Skipping specific characters in the input screen.

• The general form of a scanf function call is:

scanf(format-control-string, other-arguments);

The format-control-string describes the formats of the input, and

the other arguments are points to variables in which the input

will be stored.

COP 3223: C Programming (Intro To C – Part 3) Page 33 © Dr. Mark J. Llewellyn

Conversion Specifiers scanf

Conversion Specifier Description

d Read an optionally signed decimal integer. The corresponding

argument is a pointer to an integer variable.

i Read an optionally signed decimal, octal or hexadecimal

integer. The corresponding argument is a pointer to an integer.

O Read an octal integer. The corresponding argument is a pointer

to an unsigned integer.

u Read an unsigned decimal integer. The corresponding

argument is pointer to an unsigned integer variable.

x or X Read a hexadecimal integer. The corresponding argument is a

pointer to an unsigned integer.

h or l Place before any of the integer conversion specifiers to indicate
that a short or long integer is to be input.

scanf conversion specifiers for use with integer values

COP 3223: C Programming (Intro To C – Part 3) Page 34 © Dr. Mark J. Llewellyn

Conversion Specifier Description

e, E, f, g, or

G

Read a floating-point value. The corresponding argument is a

pointer to an floating-point variable.

l or L Place before any of the floating-point conversion specifiers to
indicate that a double or long value is to be input. The

corresponding argument is a point to a double or long

double variable.

scanf conversion specifiers for use with floating-point values

Conversion Specifier Description

c Read a character. The corresponding argument is a pointer to a
char; no null („\0‟) is added.

s Read a string. The corresponding argument is a pointer to an
array of type char that is large enough to hold the string and a

terminating null („\0‟) character – which is automatically

added.

scanf conversion specifiers for use with characters and strings

COP 3223: C Programming (Intro To C – Part 3) Page 35 © Dr. Mark J. Llewellyn

scanf with integer

conversion specifiers

COP 3223: C Programming (Intro To C – Part 3) Page 36 © Dr. Mark J. Llewellyn

scanf with floating-point

conversion specifiers

COP 3223: C Programming (Intro To C – Part 3) Page 37 © Dr. Mark J. Llewellyn

scanf using field widths

COP 3223: C Programming (Intro To C – Part 3) Page 38 © Dr. Mark J. Llewellyn

Practice Problems
1. Write a C program that will ask the user to enter a very

large floating-point number using exponential notation and
the program will then print that number in normal decimal
notation. Assume that the very large number used for the
input would not require a field larger than 15 digits.

